Presentation/Session Information

Session Information

Session Title: Behavior Session Type: Parallel
Session Location: De Neve Auditorium Session Time: Thu, Jun 25 8:30AM - 11:30AM

Presentation Information

Program Number: 42 Presentation Time: 10:18AM - 10:30AM

Presentation Content

The taste receptor homolog LITE-1 is a novel type of photoreceptor protein.Jianke Gong 1,2, Yiyuan Yuan 1,3, Alex Ward 1,4, Zhaoyang Feng 3, Jianfeng Liu 2, X.Z.Shawn Xu 1. 1)Life Sciences Institute and Department of Molecular and Integrative Physiology, Unversity of Michigan, Ann Arbor, MI; 2)College of Life Sciences, Huazhong University of science and technology, Wuhan, Hubei, China; 3)Department of Pharmacology, Case Western Reserve University, Cleveland, OH; 4)Department of Biology, Stanford University, Palo Alto, CA

It has long been assumed that the nematode C. elegans lacks the sense of light, mainly because it lives in the dark soil and does not have eyes.  However, we and others have reported the surprising observation that C. elegans in fact possesses a simple visual system; and short-wavelength light, especially UV light, induces avoidance behavior mediated by a group of photoreceptor neurons which require the function of the lite-1 gene, a member of the invertebrate taste receptor family[Ward.(2008),Liu.(2010),Edwards.(2008)]. Interestingly, a Drosophila homolog of lite-1 has also been suggested to mediate light-induced avoidance behavior in fly larva[Xiang.(2010)]. As such, lite-1 has been suggested to encode a light-sensing protein rather than act as a taste receptor.

However, more recent work has demonstrated that light, particularly UV light, generates reactive oxygen species (ROS) such as H2O2[Bhatla.(2015)].  H2O2 also induces avoidance behavior in a way similar to UV light, suggesting that light-induced avoidance behavior could be mediated by ROS produced by light illumination rather than light itself. This raises the possibility that LITE-1 functions as a chemoreceptor instead of a photoreceptor protein. 

To directly test whether LITE-1 can function as a photoreceptor protein, we biochemically purified LITE-1 to homogeneity from worm lysate. We found that LITE-1 directly absorbs UV light with an extinction coefficient in the range of 10*6.  This indicates that LITE-1 is 10-100 times more sensitive to light than all known photoreceptor proteins, such as rhodopsin, cryptochrome, phytochrome and phototropin.  In a genetic screen, we identified missense mutations in the lite-1 gene, which disrupt LITE-1 function in vivo. By purifying LITE-1 protein harboring these mutations, we found that the mutations also abolish light-absorption by LITE-1 protein in vitro, providing insights into the biophysical mechanism underlying light-sensing by LITE-1. Our results show that LITE-1 can function as a bona fide photoreceptor and represents the most sensitive light-detecting protein identified to date. .




Please note: Abstract shown here should NOT be cited in bibliographies. Material contained herein should be treated as personal communication and should be cited as such only with the consent of the author.

The Genetics Society of America
9650 Rockville Pike, Bethesda, MD
Phone: 301-634-7300, Fax: 301-634-7079
Questions and Comments: society@genetics-gsa.org