Donate Today!   Join GSA      

Home | Contact GSA      

2014 Web Spotlights
G3: Genes|Genomes|Genetics
2014 Web Spotlights
The GSA Reporter
GSA e-News
Genes to Genomes:
the GSA blog
Advertising with GSA
Spotlight on Undergraduate Research








2014 GENETICS Web Spotlight

2013 Web Spotlight


Since 1916, GENETICS has sought to publish significant advances in the field. To be accepted for publication, manuscripts must provide new insights into a biological process or demonstrate novel and creative approaches to an important biological problem or describe development of new resources, methods, technologies, or tools. And the study must be of interest to a wide range of genetics and genomics investigators. The editors of GENETICS seek to attract and publish articles that they believe will have a high impact on the field.


While it has a long and illustrious history, GENETICS has changed: it is not your mentor's journal. The editors make decisions quickly – in around 32 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is constantly innovating; some of the new and expanded types of content include:

  • YeastBook – a comprehensive compendium of reviews that presents the current state of knowledge of the molecular biology, cellular biology, and genetics of the yeast Saccharomyces cerevisiae.

  • Educational Primers – tied to a current article in GENETICS, these educational resources lay out the necessary background (i.e., what was the question and why did that question matter?), explain the hypothesis or approach, describe the methodology, guide the reader through the results, and provide a precise summation of the discussion.

  • Genetic Toolbox Reviews – describes practical and intellectual resources available for the study of less commonly used experimental organisms.

  • Reviews

Thompson Reuters JCR Impact Factor (2014): 5.963
EigenFactor (2014): 0.06335
Cited Half-life (2014): >10 years


View the Editorial Board  |  Read GENETICS  Submit your manuscript  |  Contact us



 What's Inside the Current Issue of GENETICS


Tuesday, September 6 2016 08:32:47 AM

ISSUE HIGHLIGHTS [Issue Highlights]

Tuesday, September 6 2016 08:32:47 AM

Sydney Brenner on the Genetics of Caenorhabditis elegans [Classic]

Goldstein, B.

Tuesday, September 6 2016 08:32:47 AM

Barbara McClintock on Defining the Unstable Genome [Classic]

Halpern, M. E.

Tuesday, September 6 2016 08:32:47 AM

Teaching Genetics: Past, Present, and Future [Commentary]

Smith, M. K., Wood, W. B.

Genetics teaching at the undergraduate level has changed in many ways over the past century. Compared to those of 100 years ago, contemporary genetics courses are broader in content and are taught increasingly differently, using instructional techniques based on educational research and constructed around the principles of active learning and backward design. Future courses can benefit from wider adoption of these approaches, more emphasis on the practice of genetics as a science, and new methods of assessing student learning.

Tuesday, September 6 2016 08:32:47 AM

Medical Genetics and the First Studies of the Genetics of Populations in Mexico [Perspectives]

Barahona, A.

Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén’s studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl’s studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker’s studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts.

Tuesday, September 6 2016 08:32:47 AM

A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy [Multi-parental Block]

Brenton, Z. W., Cooper, E. A., Myers, M. T., Boyles, R. E., Shakoor, N., Zielinski, K. J., Rauh, B. L., Bridges, W. C., Morris, G. P., Kresovich, S.

With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production.

Tuesday, September 6 2016 08:32:47 AM

Fast-Flowering Mini-Maize: Seed to Seed in 60 Days [Methods, Technology and Resources]

McCaw, M. E., Wallace, J. G., Albert, P. S., Buckler, E. S., Birchler, J. A.

Two lines of Zea mays were developed as a short-generation model for maize. The Fast-Flowering Mini-Maize (FFMM) lines A and B are robust inbred lines with a significantly shorter generation time, much smaller stature, and better greenhouse adaptation than traditional maize varieties. Five generations a year are typical. FFMM is the result of a modified double-cross hybrid between four fast-flowering lines: Neuffer’s Early ACR (full color), Alexander’s Early Early Synthetic, Tom Thumb Popcorn, and Gaspe Flint, followed by selection for early flowering and desirable morphology throughout an 11-generation selfing regime. Lines A and B were derived from different progeny of the initial hybrid, and crosses between Mini-Maize A and B exhibit heterosis. The ancestry of each genomic region of Mini-Maize A and B was inferred from the four founder populations using genotyping by sequencing. Other genetic and genomic tools for these lines include karyotypes for both lines A and B, kernel genetic markers y1 (white endosperm) and R1-scm2 (purple endosperm and embryo) introgressed into Mini-Maize A, and ~24x whole-genome resequencing data for Mini-Maize A.

Tuesday, September 6 2016 08:32:47 AM

Detecting Heterogeneity in Population Structure Across the Genome in Admixed Populations [Statistical Genetics and Genomics]

McHugh, C., Brown, L., Thornton, T. A.

The genetic structure of human populations is often characterized by aggregating measures of ancestry across the autosomal chromosomes. While it may be reasonable to assume that population structure patterns are similar genome-wide in relatively homogeneous populations, this assumption may not be appropriate for admixed populations, such as Hispanics and African-Americans, with recent ancestry from two or more continents. Recent studies have suggested that systematic ancestry differences can arise at genomic locations in admixed populations as a result of selection and nonrandom mating. Here, we propose a method, which we refer to as the chromosomal ancestry differences (CAnD) test, for detecting heterogeneity in population structure across the genome. CAnD can incorporate either local or chromosome-wide ancestry inferred from SNP genotype data to identify chromosomes harboring genomic regions with ancestry contributions that are significantly different than expected. In simulation studies with real genotype data from phase III of the HapMap Project, we demonstrate the validity and power of CAnD. We apply CAnD to the HapMap Mexican-American (MXL) and African-American (ASW) population samples; in this analysis the software RFMix is used to infer local ancestry at genomic regions, assuming admixing from Europeans, West Africans, and Native Americans. The CAnD test provides strong evidence of heterogeneity in population structure across the genome in the MXL sample ($$p=1e-5$$), which is largely driven by elevated Native American ancestry and deficit of European ancestry on the X chromosomes. Among the ASW, all chromosomes are largely African derived and no heterogeneity in population structure is detected in this sample.

Tuesday, September 6 2016 08:32:48 AM

A Genealogical Look at Shared Ancestry on the X Chromosome [Statistical Genetics and Genomics]

Buffalo, V., Mount, S. M., Coop, G.

Close relatives can share large segments of their genome identical by descent (IBD) that can be identified in genome-wide polymorphism data sets. There are a range of methods to use these IBD segments to identify relatives and estimate their relationship. These methods have focused on sharing on the autosomes, as they provide a rich source of information about genealogical relationships. We hope to learn additional information about recent ancestry through shared IBD segments on the X chromosome, but currently lack the theoretical framework to use this information fully. Here, we fill this gap by developing probability distributions for the number and length of X chromosome segments shared IBD between an individual and an ancestor k generations back, as well as between half- and full-cousin relationships. Due to the inheritance pattern of the X and the fact that X homologous recombination occurs only in females (outside of the pseudoautosomal regions), the number of females along a genealogical lineage is a key quantity for understanding the number and length of the IBD segments shared among relatives. When inferring relationships among individuals, the number of female ancestors along a genealogical lineage will often be unknown. Therefore, our IBD segment length and number distributions marginalize over this unknown number of recombinational meioses through a distribution of recombinational meioses we derive. By using Bayes’ theorem to invert these distributions, we can estimate the number of female ancestors between two relatives, giving us details about the genealogical relations between individuals not possible with autosomal data alone.

Tuesday, September 6 2016 08:32:48 AM

A Statistical Guide to the Design of Deep Mutational Scanning Experiments [Statistical Genetics and Genomics]

Matuszewski, S., Hildebrandt, M. E., Ghenu, A.-H., Jensen, J. D., Bank, C.

The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates.

Tuesday, September 6 2016 08:32:48 AM

Bayesian Inference of the Evolution of a Phenotype Distribution on a Phylogenetic Tree [Statistical Genetics and Genomics]

Ansari, M. A., Didelot, X.

The distribution of a phenotype on a phylogenetic tree is often a quantity of interest. Many phenotypes have imperfect heritability, so that a measurement of the phenotype for an individual can be thought of as a single realization from the phenotype distribution of that individual. If all individuals in a phylogeny had the same phenotype distribution, measured phenotypes would be randomly distributed on the tree leaves. This is, however, often not the case, implying that the phenotype distribution evolves over time. Here we propose a new model based on this principle of evolving phenotype distribution on the branches of a phylogeny, which is different from ancestral state reconstruction where the phenotype itself is assumed to evolve. We develop an efficient Bayesian inference method to estimate the parameters of our model and to test the evidence for changes in the phenotype distribution. We use multiple simulated data sets to show that our algorithm has good sensitivity and specificity properties. Since our method identifies branches on the tree on which the phenotype distribution has changed, it is able to break down a tree into components for which this distribution is unique and constant. We present two applications of our method, one investigating the association between HIV genetic variation and human leukocyte antigen and the other studying host range distribution in a lineage of Salmonella enterica, and we discuss many other potential applications.

Tuesday, September 6 2016 08:32:48 AM

Genetic Architecture of Domestication-Related Traits in Maize [Statistical Genetics and Genomics]

Xue, S., Bradbury, P. J., Casstevens, T., Holland, J. B.

Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genetic basis of this could be sequence variation at the same key genes controlling maize–teosinte differentiation (due to lack of fixation or arising as new mutations after domestication), distinct loci with large effects, or polygenic background variation. Previous studies permit annotation of maize genome regions associated with the major differences between maize and teosinte or that exhibit population genetic signals of selection during either domestication or postdomestication improvement. Genome-wide association studies and genetic variance partitioning analyses were performed in two diverse maize inbred line panels to compare the phenotypic effects and variances of sequence polymorphisms in regions involved in domestication and improvement to the rest of the genome. Additive polygenic models explained most of the genotypic variation for domestication-related traits; no large-effect loci were detected for any trait. Most trait variance was associated with background genomic regions lacking previous evidence for involvement in domestication. Improvement sweep regions were associated with more trait variation than expected based on the proportion of the genome they represent. Selection during domestication eliminated large-effect genetic variants that would revert maize toward a teosinte type. Small-effect polygenic variants (enriched in the improvement sweep regions of the genome) are responsible for most of the standing variation for domestication-related traits in maize.

Tuesday, September 6 2016 08:32:48 AM

Remarkably Long-Tract Gene Conversion Induced by Fragile Site Instability in Saccharomyces cerevisiae [Genome Integrity and Transmission]

Chumki, S. A., Dunn, M. K., Coates, T. F., Mishler, J. D., Younkin, E. M., Casper, A. M.

Replication stress causes breaks at chromosomal locations called common fragile sites. Deletions causing loss of heterozygosity (LOH) in human tumors are strongly correlated with common fragile sites, but the role of gene conversion in LOH at fragile sites in tumors is less well studied. Here, we investigated gene conversion stimulated by instability at fragile site FS2 in the yeast Saccharomyces cerevisiae. In our screening system, mitotic LOH events near FS2 are identified by production of red/white sectored colonies. We analyzed single nucleotide polymorphisms between homologs to determine the cause and extent of LOH. Instability at FS2 increases gene conversion 48- to 62-fold, and conversions unassociated with crossover represent 6–7% of LOH events. Gene conversion can result from repair of mismatches in heteroduplex DNA during synthesis-dependent strand annealing (SDSA), double-strand break repair (DSBR), and from break-induced replication (BIR) that switches templates [double BIR (dBIR)]. It has been proposed that SDSA and DSBR typically result in shorter gene-conversion tracts than dBIR. In cells under replication stress, we found that bidirectional tracts at FS2 have a median length of 40.8 kb and a wide distribution of lengths; most of these tracts are not crossover-associated. Tracts that begin at the fragile site FS2 and extend only distally are significantly shorter. The high abundance and long length of noncrossover, bidirectional gene-conversion tracts suggests that dBIR is a prominent mechanism for repair of lesions at FS2, thus this mechanism is likely to be a driver of common fragile site-stimulated LOH in human tumors.

Tuesday, September 6 2016 08:32:48 AM

Apparent Epigenetic Meiotic Double-Strand-Break Disparity in Saccharomyces cerevisiae: A Meta-Analysis [Genome Integrity and Transmission]

Stahl, F. W., Rehan, M. B. M., Foss, H. M., Borts, R. H.

Previously published, and some unpublished, tetrad data from budding yeast (Saccharomyces cerevisiae) are analyzed for disparity in gene conversion, in which one allele is more often favored than the other (conversion disparity). One such disparity, characteristic of a bias in the frequencies of meiotic double-strand DNA breaks at the hotspot near the His4 locus, is found in diploids that undergo meiosis soon after their formation, but not in diploids that have been cloned and frozen. Altered meiotic DNA breakability associated with altered metabolism-related chromatin states has been previously reported. However, the above observations imply that such differing parental chromatin states can persist through at least one chromosome replication, and probably more, in a common environment. This conclusion may have implications for interpreting changes in allele frequencies in populations.

Tuesday, September 6 2016 08:32:48 AM

RecBCD Enzyme "Chi Recognition" Mutants Recognize Chi Recombination Hotspots in the Right DNA Context [Genome Integrity and Transmission]

Amundsen, S. K., Sharp, J. W., Smith, G. R.

RecBCD enzyme is a complex, three-subunit protein machine essential for the major pathway of DNA double-strand break repair and homologous recombination in Escherichia coli. Upon encountering a Chi recombination-hotspot during DNA unwinding, RecBCD nicks DNA to produce a single-stranded DNA end onto which it loads RecA protein. Conformational changes that regulate RecBCD’s helicase and nuclease activities are induced upon its interaction with Chi, defined historically as 5' GCTGGTGG 3'. Chi is thought to be recognized as single-stranded DNA passing through a tunnel in RecC. To define the Chi recognition-domain in RecC and thus the mechanism of the RecBCD-Chi interaction, we altered by random mutagenesis eight RecC amino acids lining the tunnel. We screened for loss of Chi activity with Chi at one site in bacteriophage . The 25 recC mutants analyzed thoroughly had undetectable or strongly reduced Chi-hotspot activity with previously reported Chi sites. Remarkably, most of these mutants had readily detectable, and some nearly wild-type, activity with Chi at newly generated Chi sites. Like wild-type RecBCD, these mutants had Chi activity that responded dramatically (up to fivefold, equivalent to Chi’s hotspot activity) to nucleotide changes flanking 5' GCTGGTGG 3'. Thus, these and previously published RecC mutants thought to be Chi-recognition mutants are actually Chi context-dependence mutants. Our results fundamentally alter the view that Chi is a simple 8-bp sequence recognized by the RecC tunnel. We propose that Chi hotspots have dual nucleotide sequence interactions, with both the RecC tunnel and the RecB nuclease domain.

Tuesday, September 6 2016 08:32:48 AM

Linking Gene Expression in the Intestine to Production of Gametes Through the Phosphate Transporter PITR-1 in Caenorhabditis elegans [Gene Expression]

Balklava, Z., Rathnakumar, N. D., Vashist, S., Schweinsberg, P. J., Grant, B. D.

Inorganic phosphate is an essential mineral for both prokaryotic and eukaryotic cell metabolism and structure. Its uptake into the cell is mediated by membrane-bound transporters and coupled to Na+ transport. Mammalian sodium-dependent Pi cotransporters have been grouped into three families NaPi-I, NaPi-II, and NaPi-III. Despite being discovered more than two decades ago, very little is known about requirements for NaPi-III transporters in vivo, in the context of intact animal models. Here we find that impaired function of the Caenorhabditis elegans NaPi-III transporter, pitr-1, results in decreased brood size and dramatically increased expression of vitellogenin by the worm intestine. Unexpectedly, we found that the effects of pitr-1 mutation on vitellogenin expression in the intestine could only be rescued by expression of pitr-1 in the germline, and not by expression of pitr-1 in the intestine itself. Our results indicate the existence of a signal from the germline that regulates gene expression in the intestine, perhaps linking nutrient export from the intestine to production of gametes by the germline.

Tuesday, September 6 2016 08:32:48 AM

Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa [Gene Expression]

Olivares-Yanez, C., Emerson, J., Kettenbach, A., Loros, J. J., Dunlap, J. C., Larrondo, L. F.

Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ~24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.

Tuesday, September 6 2016 08:32:48 AM

Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation [Gene Expression]

Thurtle-Schmidt, D. M., Dodson, A. E., Rine, J.

As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2’s H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2’s catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2’s catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3. Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2’s function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.

Tuesday, September 6 2016 08:32:48 AM

Axonopathy in the Central Nervous System Is the Hallmark of Mice with a Novel Intragenic Null Mutation of Dystonin [Cellular Genetics]

Seehusen, F., Kiel, K., Jottini, S., Wohlsein, P., Habierski, A., Seibel, K., Vogel, T., Urlaub, H., Kollmar, M., Baumgartner, W., Teichmann, U.

Dystonia musculorum is a neurodegenerative disorder caused by a mutation in the dystonin gene. It has been described in mice and humans where it is called hereditary sensory autonomic neuropathy. Mutated mice show severe movement disorders and die at the age of 3–4 weeks. This study describes the discovery and molecular, clinical, as well as pathological characterization of a new spontaneously occurring mutation in the dystonin gene in C57BL/6N mice. The mutation represents a 40-kb intragenic deletion allele of the dystonin gene on chromosome 1 with exactly defined deletion borders. It was demonstrated by Western blot, mass spectrometry, and immunohistology that mice with a homozygous mutation were entirely devoid of the dystonin protein. Pathomorphological lesions were restricted to the brain stem and spinal cord and consisted of swollen, argyrophilic axons and dilated myelin sheaths in the white matter and, less frequently, total chromatolysis of neurons in the gray matter. Axonal damage was detected by amyloid precursor protein and nonphosphorylated neurofilament immunohistology. Axonopathy in the central nervous system (CNS) represents the hallmark of this disease. Mice with the dystonin mutation also showed suppurative inflammation in the respiratory tract, presumably due to brain stem lesion-associated food aspiration, whereas skeletal muscles showed no pathomorphological changes. This study describes a novel mutation in the dystonin gene in mice leading to axonopathy in the CNS. In further studies, this model may provide new insights into the pathogenesis of neurodegenerative diseases and may elucidate the complex interactions of dystonin with various other cellular proteins especially in the CNS.

Tuesday, September 6 2016 08:32:48 AM

Control of Formin Distribution and Actin Cable Assembly by the E3 Ubiquitin Ligases Dma1 and Dma2 [Cellular Genetics]

Juanes, M. A., Piatti, S.

Formins are widespread actin-polymerizing proteins that play pivotal roles in a number of processes, such as cell polarity, morphogenesis, cytokinesis, and cell migration. In agreement with their crucial function, formins are prone to a variety of regulatory mechanisms that include autoinhibition, post-translational modifications, and interaction with formin modulators. Furthermore, activation and function of formins is intimately linked to their ability to interact with membranes. In the budding yeast Saccharomyces cerevisiae, the two formins Bni1 and Bnr1 play both separate and overlapping functions in the organization of the actin cytoskeleton. In addition, they are controlled by both common and different regulatory mechanisms. Here we show that proper localization of both formins requires the redundant E3 ubiquitin ligases Dma1 and Dma2, which were previously involved in spindle positioning and septin organization. In dma1 dma2 double mutants, formin distribution at polarity sites is impaired, thus causing defects in the organization of the actin cable network and hypersensitivity to the actin depolymerizer latrunculin B. Expression of a hyperactive variant of Bni1 (Bni1-V360D) rescues these defects and partially restores proper spindle positioning in the mutant, suggesting that the failure of dma1 dma2 mutant cells to position the spindle is partly due to faulty formin activity. Strikingly, Dma1/2 interact physically with both formins, while their ubiquitin-ligase activity is required for formin function and polarized localization. Thus, ubiquitylation of formin or a formin interactor(s) could promote formin binding to membrane and its ability to nucleate actin. Altogether, our data highlight a novel level of formin regulation that further expands our knowledge of the complex and multilayered controls of these key cytoskeleton organizers.

Tuesday, September 6 2016 08:32:48 AM

Parent-of-Origin-Effect rough endosperm Mutants in Maize [Developmental and Behavioral Genetics]

Bai, F., Daliberti, M., Bagadion, A., Xu, M., Li, Y., Baier, J., Tseung, C.-W., Evans, M. M. S., Settles, A. M.

Parent-of-origin-effect loci have non-Mendelian inheritance in which phenotypes are determined by either the maternal or paternal allele alone. In angiosperms, parent-of-origin effects can be caused by loci required for gametophyte development or by imprinted genes needed for seed development. Few parent-of-origin-effect loci have been identified in maize (Zea mays) even though there are a large number of imprinted genes known from transcriptomics. We screened rough endosperm (rgh) mutants for parent-of-origin effects using reciprocal crosses with inbred parents. Six maternal rough endosperm (mre) and three paternal rough endosperm (pre) mutants were identified with three mre loci mapped. When inherited from the female parent, mre/+ seeds reduce grain fill with a rough, etched, or pitted endosperm surface. Pollen transmission of pre mutants results in rgh endosperm as well as embryo lethality. Eight of the mutants had significant distortion from the expected one-to-one ratio for parent-of-origin effects. Linked markers for mre1, mre2, and mre3 indicated that the mutant alleles have no bias in transmission. Histological analysis of mre1, mre2, mre3, and pre*-949 showed altered timing of starch grain accumulation and basal endosperm transfer cell layer (BETL) development. The mre1 locus delays BETL and starchy endosperm development, while mre2 and pre*-949 cause ectopic starchy endosperm differentiation. We conclude that many parent-of-origin effects in maize have incomplete penetrance of kernel phenotypes and that there is a large diversity of endosperm developmental roles for parent-of-origin-effect loci.

Tuesday, September 6 2016 08:32:48 AM

Maternal Gametophyte Effects on Seed Development in Maize [Developmental and Behavioral Genetics]

Chettoor, A. M., Phillips, A. R., Coker, C. T., Dilkes, B., Evans, M. M. S.

Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm and the embryo, of the seed. Because of this, there is substantial gene expression in the female gametophyte that contributes to the regulation of growth and development of the seed. A primary function of the endosperm is to provide growth support to its sister embryo. Several mutations in Zea mays subsp. mays have been identified that affect the contribution of the mother gametophyte to the seed. The majority affect both the endosperm and the embryo, although some embryo-specific effects have been observed. Many alter the pattern of expression of a marker for the basal endosperm transfer layer, a tissue that transports nutrients from the mother plant to the developing seed. Many of them cause abnormal development of the female gametophyte prior to fertilization, revealing potential cellular mechanisms of maternal control of seed development. These effects include reduced central cell size, abnormal architecture of the central cell, abnormal numbers and morphology of the antipodal cells, and abnormal egg cell morphology. These mutants provide insight into the logic of seed development, including necessary features of the gametes and supporting cells prior to fertilization, and set up future studies on the mechanisms regulating maternal contributions to the seed.

Tuesday, September 6 2016 08:32:48 AM

Empirical Bayes Estimation of Coalescence Times from Nucleotide Sequence Data [Population and Evolutionary Genetics]

King, L., Wakeley, J.

We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate.

Tuesday, September 6 2016 08:32:48 AM

Selection on Inversion Breakpoints Favors Proximity to Pairing Sensitive Sites in Drosophila melanogaster [Population and Evolutionary Genetics]

Corbett-Detig, R. B.

Chromosomal inversions are widespread among taxa, and have been implicated in a number of biological processes including adaptation, sex chromosome evolution, and segregation distortion. Consistent with selection favoring linkage between loci, it is well established that length is a selected trait of inversions. However, the factors that affect the distribution of inversion breakpoints remain poorly understood. "Sensitive sites" have been mapped on all euchromatic chromosome arms in Drosophila melanogaster, and may be a source of natural selection on inversion breakpoint positions. Briefly, sensitive sites are genomic regions wherein proximal structural rearrangements result in large reductions in local recombination rates in heterozygotes. Here, I show that breakpoints of common inversions are significantly more likely to lie within a cytological band containing a sensitive site than are breakpoints of rare inversions. Furthermore, common inversions for which neither breakpoint intersects a sensitive site are significantly longer than rare inversions, but common inversions whose breakpoints intersect a sensitive site show no evidence for increased length. I interpret these results to mean that selection favors inversions whose breakpoints disrupt synteny near to sensitive sites, possibly because these inversions suppress recombination in large genomic regions. To my knowledge this is the first evidence consistent with positive selection acting on inversion breakpoint positions.

Tuesday, September 6 2016 08:32:48 AM

The Evolutionary Fates of a Large Segmental Duplication in Mouse [Population and Evolutionary Genetics]

Morgan, A. P., Holt, J. M., McMullan, R. C., Bell, T. A., Clayshulte, A. M.- F., Didion, J. P., Yadgary, L., Thybert, D., Odom, D. T., Flicek, P., McMillan, L., de Villena, F. P.-M.

Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22. De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.

Tuesday, September 6 2016 08:32:48 AM

Genomics of Natural Populations: How Differentially Expressed Genes Shape the Evolution of Chromosomal Inversions in Drosophila pseudoobscura [Population and Evolutionary Genetics]

Fuller, Z. L., Haynes, G. D., Richards, S., Schaeffer, S. W.

Chromosomal rearrangements can shape the structure of genetic variation in the genome directly through alteration of genes at breakpoints or indirectly by holding combinations of genetic variants together due to reduced recombination. The third chromosome of Drosophila pseudoobscura is a model system to test hypotheses about how rearrangements are established in populations because its third chromosome is polymorphic for >30 gene arrangements that were generated by a series of overlapping inversion mutations. Circumstantial evidence has suggested that these gene arrangements are selected. Despite the expected homogenizing effects of extensive gene flow, the frequencies of arrangements form gradients or clines in nature, which have been stable since the system was first described >80 years ago. Furthermore, multiple arrangements exist at appreciable frequencies across several ecological niches providing the opportunity for heterokaryotypes to form. In this study, we tested whether genes are differentially expressed among chromosome arrangements in first instar larvae, adult females and males. In addition, we asked whether transcriptional patterns in heterokaryotypes are dominant, semidominant, overdominant, or underdominant. We find evidence for a significant abundance of differentially expressed genes across the inverted regions of the third chromosome, including an enrichment of genes involved in sensory perception for males. We find the majority of loci show additivity in heterokaryotypes. Our results suggest that multiple genes have expression differences among arrangements that were either captured by the original inversion mutation or accumulated after it reached polymorphic frequencies, providing a potential source of genetic variation for selection to act upon. These data suggest that the inversions are favored because of their indirect effect of recombination suppression that has held different combinations of differentially expressed genes together in the various gene arrangement backgrounds.

Tuesday, September 6 2016 08:32:48 AM

Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries [Population and Evolutionary Genetics]

Uren, C., Kim, M., Martin, A. R., Bobo, D., Gignoux, C. R., van Helden, P. D., Moller, M., Hoal, E. G., Henn, B. M.

Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ~2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the !=Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking !=Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ~14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa.

Tuesday, September 6 2016 08:32:48 AM

The Interplay of Temperature and Genotype on Patterns of Alternative Splicing in Drosophila melanogaster [Population and Evolutionary Genetics]

Jakšić, A. M., Schlotterer, C.

Alternative splicing is the highly regulated process of variation in the removal of introns from premessenger-RNA transcripts. The consequences of alternative splicing on the phenotype are well documented, but the impact of the environment on alternative splicing is not yet clear. We studied variation in alternative splicing among four different temperatures, 13, 18, 23, and 29°, in two Drosophila melanogaster genotypes. We show plasticity of alternative splicing with up to 10% of the expressed genes being differentially spliced between the most extreme temperatures for a given genotype. Comparing the two genotypes at different temperatures, we found <1% of the genes being differentially spliced at 18°. At extreme temperatures, however, we detected substantial differences in alternative splicing—with almost 10% of the genes having differential splicing between the genotypes: a magnitude similar to between species differences. Genes with differential alternative splicing between genotypes frequently exhibit dominant inheritance. Remarkably, the pattern of surplus of differences in alternative splicing at extreme temperatures resembled the pattern seen for gene expression intensity. Since different sets of genes were involved for the two phenotypes, we propose that purifying selection results in the reduction of differences at benign temperatures. Relaxed purifying selection at temperature extremes, on the other hand, may cause the divergence in gene expression and alternative splicing between the two strains in rarely encountered environments.

Tuesday, September 6 2016 08:32:48 AM

Novel Innate Immune Genes Regulating the Macrophage Response to Gram Positive Bacteria [Genetics of Complex Traits]

Alper, S., Warg, L. A., De Arras, L., Flatley, B. R., Davidson, E. J., Adams, J., Smith, K., Wohlford-Lenane, C. L., McCray, P. B., Pedersen, B. S., Schwartz, D. A., Yang, I. V.

Host variation in Toll-like receptors and other innate immune signaling molecules alters infection susceptibility. However, only a portion of the variability observed in the innate immune response is accounted for by known genes in these pathways. Thus, the identification of additional genes that regulate the response to Gram positive bacteria is warranted. Bone marrow-derived macrophages (BMMs) from 43 inbred mouse strains were stimulated with lipotechoic acid (LTA), a major component of the Gram positive bacterial cell wall. Concentrations of the proinflammatory cytokines IL-6, IL-12, and TNF-α were measured. In silico whole genome association (WGA) mapping was performed using cytokine responses followed by network analysis to prioritize candidate genes. To determine which candidate genes could be responsible for regulating the LTA response, candidate genes were inhibited using RNA interference (RNAi) and were overexpressed in RAW264.7 macrophages. BMMs from Bdkrb1-deficient mice were used to assess the effect of Bdkrb1 gene deletion on the response to LTA, heat-killed Streptococcus pneumoniae, and heat-killed Staphylococcus aureus. WGA mapping identified 117 loci: IL-6 analysis yielded 20 loci (average locus size = 0.133 Mb; 18 genes), IL-12 analysis produced 5 loci (0.201 Mb average; 7 genes), and TNF-α analysis yielded 92 loci (0.464 Mb average; 186 genes of which 46 were prioritized by network analysis). The follow-up small interfering RNA screen of 71 target genes identified four genes (Bdkrb1, Blnk, Fbxo17, and Nkx6-1) whose inhibition resulted in significantly reduced cytokine production following LTA stimulation. Overexpression of these four genes resulted in significantly increased cytokine production in response to LTA. Bdkrb1-deficient macrophages were less responsive to LTA and heat-killed S. aureus, validating the genetic and RNAi approach to identify novel regulators of the response to LTA. We have identified four innate immune response genes that may contribute to Gram positive bacterial susceptibility.

Tuesday, September 6 2016 08:32:48 AM

Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait [Genetics of Immunity]

Iakovidis, M., Teixeira, P. J. P. L., Exposito-Alonso, M., Cowper, M. G., Law, T. F., Liu, Q., Vu, M. C., Dang, T. M., Corwin, J. A., Weigel, D., Dangl, J. L., Grant, S. R.

We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.

Tuesday, September 6 2016 08:32:48 AM

Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans [Genetics of Sex]

Kramer, M., Rao, P., Ercan, S.

Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.

Tuesday, September 6 2016 08:32:48 AM

The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length [Genome and Systems Biology]

Cook, D. E., Zdraljevic, S., Tanny, R. E., Seo, B., Riccardi, D. D., Noble, L. M., Rockman, M. V., Alkema, M. J., Braendle, C., Kammenga, J. E., Wang, J., Kruglyak, L., Felix, M.-A., Lee, J., Andersen, E. C.

Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.

Tuesday, September 6 2016 08:32:48 AM

Corrigendum [Corrigendum]